Դիպլոմային նախագիծ․

Մասնագիտությունը ՝ «Հաշվողական տեխնիկայի միջոցների և համակարգչային ցանցերի տեխնիկական սպասարկում»

Թեմա ՝ «Սկինեմատիկ» 

Ուսանող ՝ Սեդրակ Հովհաննիսյան

Ղեկավար ՝ Ելենա Օհանյան՝ Գեղամ Խաչատրյան՝  Երևանի «Մխիթար Սեբաստացի» կրթահամալիրի քոլեջի դասավանդող

Դիպլոմային աշխատանք Word տարբերակ

Դիպլոմային աշխատանք PDF տարբերակ

Սահիկաշար

Կյաքի հղումը

ԲՈՎԱՆԴԱԿՈՒԹՅՈՒՆ

ՆԵՐԱԾՈՒԹՅՈՒՆ

ԳԼՈՒԽ 1։ ՎԻԴԵՈ ՀԵՌԱՐՁԱԿՄԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ ԵՒ ՄՈՏԵՑՈՒՄՆԵՐ

1.1․ Վիդեո ֆայլերի ձևաչափերը և կոդեկները, վիդեո հեռարձակման հիմնական մեթոդները։

1.2․ Բովանդակության առաքման ցանցեր (CDN)։

1.3․ Վիդեոների օպտիմալացման մեթոդներ։

ԳԼՈՒԽ 2։ ՍԻՆԵՄԱՏԻԿՆԵՐԻ ՀԱՎԱՔԱԾՈՒԻ ԿԱՅՔԻ ՆԱԽԱԳԾՈՒՄԸ

2.1․ Կայքի պահանջների վերլուծություն և ճարտարապետության նախագծում:

2.2․ Կայքի տեխնիկական իրականացման համար տեխնոլոգիաների ընտրություն:

ԳԼՈՒԽ 3։ ՍԻՆԵՄԱՏԻԿՆԵՐԻ ՀԱՎԱՔԱԾՈՒԻ ԿԱՅՔԻ ՄՇԱԿՈՒՄԸ ԵՒ ՓՈՐՁԱՐԿՈՒՄԸ

3.1․ Կայքի frontend-ի և backend-ի մշակում։

3․2․ Վիդեո հեռարձակման մեխանիզմների իրականացումը:

ԵԶՐԱԿԱՑՈՒԹՅՈՒՆ

ՀԱՎԵԼՎԱԾՆԵՐ

ՕԳՏԱԳՈՐԾՎԱԾ ԳՐԱԿԱՆՈՒԹՅԱՆ ԵՎ/ԿԱՄ ԷԼԵԿՏՐՈՆԱՅԻՆ ՌԵՍՈՒՐՍՆԵՐԻ ՑԱՆԿ

Փոփոխականի փոփոխություն

Փոփոխականի փոփոխությունը կամ փոխարինման մեթոդը անորոշ ինտեգրալների հաշվարկման մեթոդ է, որում ինտեգրման փոփոխականը փոխարինվում է մեկ այլ փոփոխականով՝ ինտեգրալը պարզեցնելու համար։ Հիմնական գաղափարն է՝ գտնել ( u = g(x) ) ֆունկցիա, որը կպարզեցնի արտահայտությունը։Բ

Ածանցման կանոններ

Ֆունկցիան մեկ գրաֆիկի կախվածությունն է մյուսից

Աստիճանային ֆունկցիաներ: Որպեսզի գտնեք xn աստիճանային ֆունկցիայի ածանցյալը, բազմապատկեք n աստիճանային ֆունկցիայի ցուցանիշը x-ի վրա n-1 աստիճով: Օրինակ, x2-ի ածանցյալը հավասար է 2x-ին:


եռանկյունաչափական ֆունկցիաներ: Սինուսի արտադրյալը – կոսինուս է, կոսինուսի արտադրյալը – մինուս սինուս, իսկ տանգենսի արտադրյալը – սեկանսի քառակուսի:

լոգարիթմական ֆունկցիաներ:x-ից բնական լոգարիֆմի արտադրյալը հավասար է 1/x-ին:

Ֆունկցիաների գումարն ու տարբերությունը:Ֆունկցիաների արտադրյալ գումարը (կամ տարբերությունը) հավասար է դրանց արտադրյալների գումարին (կամ տարբերությանը):

մասնավոր ֆունկցիաների արտադրյալը:Ֆունկցիաների արտադրյալը հաշվարկվում է արտադրյալի կանոնի միջոցով, իսկ մասնավորի արտադրյալը հաշվարկվում է մասնավորի կանոնի միջոցով:


Շղթայական կանոն:Բարդ ֆունկցիայի f((g((x)) արտադրյալը հաշվարկվում է որպես արտաքին ֆունկցիայի f′ արտադրյալի արտադրյալը ներքին ֆունկցիայի g′ արտադրյալի վրա:

Ֆունկցիայի էքստրեմումները և ածանցյալը

Ֆունկցիայի ծայրահեղություններն այն ֆունկցիայի արժեքներն են, որոնք ամենամեծն են կամ ամենափոքրը տվյալ միջակայքում: Ծայրահեղությունը կարող է լինել տեղական (առաջանում է միջակայքում) կամ գլոբալ (ամբողջ ընդմիջման ընթացքում):

Ֆունկցիայի ծայրահեղությունը գտնելու համար անհրաժեշտ է գտնել դրա ածանցյալները: Տվյալ կետում ֆունկցիայի ածանցյալը ցույց է տալիս տվյալ կետում ֆունկցիայի փոփոխության արագությունը։ Ֆունկցիայի ծայրահեղությունը կարող է լինել այն կետերում, որտեղ ածանցյալը զրո է կամ գոյություն չունի:

Ֆունկցիայի ծայրահեղությունը գտնելու համար պետք է.

  1. Գտի՛ր ֆունկցիաների ածանցյալները:
  2. Գտի՛ր այն կետերը, որտեղ ածանցյալը զրո է կամ գոյություն չունի:
  3. Ստուգեք գործառույթի արժեքները գտնված կետերում և համեմատեք դրանք՝ որոշելու տեղական և գլոբալ ծայրահեղությունները:

Հուսով եմ, որ սա կօգնի ձեզ ավելի լավ հասկանալ ֆունկցիաների ծայրահեղությունները և ածանցյալները: Եթե ​​ունեք լրացուցիչ հարցեր, մի հապաղեք հարցնել:

Ֆունկցիայի մոնոտոնության միջակայքերը և ածանցյալը

Մոնոտոնության ֆունկցիան ֆունկցիայի հատկությունն է՝ պահպանելու փոփոխականի աճող կամ նվազման կարգը։ Երբ ֆունկցիան պահպանում է աճող կարգը, ասում են, որ այն միապաղաղ աճող է, իսկ երբ ֆունկցիան պահպանում է նվազման կարգը, ասում են, որ միապաղաղ նվազող է:

Ֆունկցիայի ածանցյալը նրա ածանցյալն է, որը ցույց է տալիս, թե ինչպես է ֆունկցիան փոխվում իր արգումենտի նկատմամբ։ Ֆունկցիայի ածանցյալը ցույց է տալիս ֆունկցիայի փոփոխության արագությունը նրա սահմանման տիրույթի յուրաքանչյուր կետում:

Ֆունկցիայի կրիտիկական կետերն այն կետերն են, որոնցում ֆունկցիայի ածանցյալը զրո է կամ գոյություն չունի։ Կրիտիկական կետերը կարող են լինել ֆունկցիայի ծայրահեղությունները (նվազագույնը, առավելագույնը կամ թեքման կետերը), ինչպես նաև բեկման կետերը կամ մակարդակի գծերի հատման կետերը:

ֆունկցիայի գրաֆիկի շոշափող

Որոշակի կետում ֆունկցիայի գրաֆիկին շոշափողն այն ուղիղ գիծն է, որը դիպչում է տվյալ կետի ֆունկցիայի գրաֆիկին և ունի նույն անկյունային թեքությունը, ինչ տվյալ կետի ֆունկցիայի գրաֆիկի կորը: Շոշափող հավասարումը լուծելու համար անհրաժեշտ է երկու պարամետրով գտնել գծի հավասարումը.

Եթե ​​տրված է (f(x)) ֆունկցիան, ապա (x_0) կետում այս ֆունկցիայի շոշափողի հավասարումը գտնելու համար մենք կատարում ենք հետևյալ քայլերը.

  1. Գտի՛ր (f'(x)) ֆունկցիայի ածանցյալը:
  2. Հաշվի՛ր ածանցյալի արժեքը (x_0) կետում՝ ստանալով (f'(x_0)):
  3. Փոխարինեք (x_0, f(x_0)) կետի կոորդինատները և ածանցյալի գտնված արժեքը շոշափող հավասարման բանաձևով: Շոշափող հավասարումն ունի ձև՝ (y = f(x_0) + f'(x_0)(x – x_0)):

e  թվի Իռացիոնալության ապացուցում

Իռացիոնալության ապացուցում

  • e թիվը հանդիսանում է հաշվելի (և հետևաբար նաև թվաբանական) թիվ։
  • \!e^{ix} = \cos(x) + i \sin(x), տես նաև Էյլերի բանաձևը, մասնավորապես՝
    • e^{i\pi} + 1 = 0 \,\!
    •  e=\cos(i) - i \sin(i)=\sinh(1) + \cosh(1)

Բանաձևեր, որոնք կապ են հաստատում e և \pi թվերի միջև՝

  • այսպես կոչված «Պուասոնի ինտեգրալ» կամ «Գաուսի ինտեգրալ»

\int\limits_{-\infty}^{\infty}\ e^{-x^2}{dx} = \sqrt{\pi}

  • սահման

e=\lim \limits_{n \to \infty} n \cdot \bigg (\frac{\sqrt{2 \pi n}}{n!} \bigg )^{\frac 1n}

Ցանկացած z կոմպլեքս թվի համար ճիշտ են հետևյալ հավասարումները՝e^z=\sum_{n=0}^\infty \frac{1}{n!}z^n=\lim_{n\to\infty}\left(1+\frac{z}{n}\right)^n :

e թիվը կարելի է գրել անվերջ շղթայական կոտորակի տեսքով հետևյալ ձևով՝

  • e = [2; \;1, 2, 1, \;1, 4, 1, \;1, 6, 1, \;1, 8, 1, \;1, 10, 1, \ldots] \,, այսինքն՝

2+11+12+11+11+14+11+11+16+11+11+18+11+11+110+11+…e = 2+\cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{4 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{6 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{8 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{10 + \cfrac{1}{1 + \ldots}}}}}}}}}}}}}}}

  • կամ նրան համարժեքը՝

2+11+12+23+34+4…e = 2+\cfrac{1}{1 + \cfrac{1}{2 + \cfrac{2}{3 + \cfrac{3}{4+\cfrac{4}{\ldots}}}}}

  • Արագ մեծ թվով նշանների հաշվման համար հարմար է օգտագործել հետևյալ տեսքը՝

 \frac{e+1}{e-1}=2 + \cfrac{1}{6 + \cfrac{1}{10 + \cfrac{1}{14 + \cfrac{1}{\ldots}}}}

  • e = \lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} ։
  • Կատալանայի ներկայացումը՝

e=2\cdot\sqrt{\frac{4}{3}}\cdot\sqrt[4]{\frac{6\cdot 8}{5\cdot 7}}\cdot\sqrt[8]{\frac{10\cdot 12\cdot 14\cdot 16}{9\cdot 11\cdot 13\cdot 15}}\cdot\sqrt[16]{\frac{18\cdot 20\cdot 22\cdot 24\cdot 26\cdot 28\cdot 30\cdot 32}{17\cdot 19\cdot 21\cdot 23\cdot 25\cdot 27\cdot 29\cdot 31}}\cdots

  • Արտադրյալի տեսքով ներկայացում՝

 e=\sqrt{3} \cdot \prod \limits_{k=1}^{\infty}\frac{\left ( 2k+3 \right )^{k+\frac 12}\left ( 2k-1 \right )^{k-\frac 12}}{\left (2k+1 \right )^{2k}}

  • Բելլի թվի միջոցով՝

e = \frac{1}{B_n}\sum_{k=0}^\infty \frac{k^n}{k!}

  • e թվի իռացիոնալության չափը հավասար է 2-ի (այն է իռացիոնալ թվերի համար ամենափոքր հնարավոր արժեքը)։

Պատմություն

Այս թիվը երբեմն անվանում են նեպերյան ի պատիվ շոտլանդացի գիտնական Նեպերի, ով հայտնի է «Լոգարիթմների զարմանալի աղյուսակի նկարագրություն» աշխատությունով (1614 թվական)։ Սակայն այս անվանումն այնքան էլ տեղին չէ, քանի որ նրանում x թվի լոգ

արիթմը հավասար էր 107⋅log1/(107)10^7\cdot\,\log_{1/e}\left(\frac{x}{10^7}\right) \,\! ։

Առաջին անգամ հաստատունը ոչ ակնհայտ երևում է Նեպերի վերոնշյալ աշխատության հավելվածի անգլերեն թարգմանությունում, որը հրապարակվել է 1618 թվականին։ Ոչ ակնհայտ, որովհետև այնտեղ պարունակվում էին միայն բնական լոգարիթմների աղյուսակները, որոշված կինեմատիկ նկատառումներից, իսկ ինքը՝ հաստատունը, չի ներկայացել։

Ենթադրվում է, որ աղյուսակի հեղինակը եղել է անգլիացի մաթեմատիկոս Օտրեդը։

Հենց նույն հաստատունը առաջին անգամ հաշվել է շվեյցարացի մաթեմատիկոս Բեռնուլին սահմանային եկամուտի մեծության որոշման խնդրի լուծման ժամանակ։ Նա հայտնաբերել է, որ եթե սկզբնական գումարը 1 դոլար է և հաշվարկվում է 100% տարեկան մեկ անգամ տարվա վերջում, ապա գումարային արդյունքը կկազմի 2 դոլար։ Սակայն եթե այդ նույն տոկոսները հաշվարկենք տարվա մեջ երկու անգամ, ապա 1 դոլարը կբազմապատկվի 1.5-ով կրկնակի անգամ, արդյունքում ստանալով 1.00×1.52=2.25 դոլար։ Տոկոսների հաշվարկը քառորդ տարին մեկ անգամ կբերի 1.00×1.254=2.44140625 դոլար արդյունքի և այդպես շարունակ։ Բերնուլին ցույց տվեց, որ եթե տոկոսի հաշվարկի հաճախականությունը անվերջ մեծացնենք, ապա տոկոսային եկամուտը բարդ տոկոսի դեպքում ունի այսպիսի սահման՝ \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n և այդ սահմանը հավասար է 2,71828…

1.00×(1+1/12)12 = 2.613035… դոլար

1.00×(1+1/365)365 = 2.714568… դոլար

Այսպիսով, e հաստատունը նշանակում է առավելագույն մեծ տարեկան եկամուտ 100% տարեկանի դեպքում և տոկոսների կապիտալիզացիայի առավելագույն մաս։

Այս հաստատունի առաջին հայտնի օգտագործումը, որտեղ այն նշանակված էր b տառով, հանդիպել է 1690-1691 թվականներին Լեյբնից Գյույտենսուի նամակներում։

e տառը սկսեց օգտագործել էյլերը 1727 թվականին, իսկ այդ տառով առաջին հրապարակումը եղել է նրա «Մեխանիկա կամ գիտություն շարժման մասին՝ մեկնաբանված անալիտիկորեն» աշխատությունում 1736 թվականին։ Համապատասխանաբար, e–ն սովորաբար անվանում են Էյլերի թիվ։ Չնայած հետագայում որոշ գիտնականներ սկսեցին օգտագործել c տառը, այնուամենայնիվ e տառը օգտագործվում էր ավելի հաճախ և մեր օրերում էլ հանդիսանում է ստանդարտ նշանակում։

Ինչու հենց e տառն ընտրվեց՝ անհայտ է։ Հնարավոր է, որ այն կապված է նրա հետ, որ նրանով սկսվում է exponential («ցուցչային», «էքսպոնենտային») բառը։ Մեկ այլ ենթադրությամբ a, b, c և d տառերը այլ նպատակներով ավելի հաճախ են օգտագործվել, և e-ն առաջին «ազատ» տառն էր հանդիսանում։ Հատկանշական է նաև, որ e-ն հանդիսանում է Էյլերի (Euler) ազգանվան առաջին տառը։

Մոտարկումներ

  • Թիվը կարելի է հիշել որպես 2,7 և կրկնվող 18, 28, 18, 28 թվեր։
  • Հիշվող կանոն՝ 2 և 7, հետո երկու անգամ Լև Տոլստոյի ծննդյան տարեթիվը (1828), այնուհետև հավասարակողմ ուղղանկյուն եռանկյան անկյունները (45, 90 և 45 աստիճաններ)։
  • e թվի կանոնը կապվում է ԱՄՆ նախագահ Էնդրյու Ջեքսոնի հետ. 2 անգամ ընտրվել է, եղել է ԱՄՆ-ի 7-րդ նախագահը, 1828 թվականը նրա ընտրվելու թվականն է, կրկնվում է երկու անգամ, քանի որ Է.Ջեքսոնը ընտրվել է երկու անգամ։ Այնուհետև հավասարակողմ ուղղանկյուն եռանկյուն։
  • Ստորակետից հետո երեք նշանի ճշտությամբ «սատանայի թվի» օգնությամբ. անհրաժեշտ է 666-ը բաժանել թվի վրա, որը կազմված է 6-4, 6-2, 6-1 թվերից (երեք վեցեր, որոնցից հակառակ կարգով հեռացվում է երկուսի առաջին երեք աստիճանները)՝ 666245≈2,718{666 \over 245} \approx 2,718 ։
  • թիվը հիշվում է որպես 66610⋅666−13\frac{666}{10 \cdot \sqrt{666} - 13} (0,001-ի ճշտությամբ)։
  • e թվի կոպիտ մոտարկումը (0,001-ի ճշտությամբ) հավասար է⋅cos⁡6\pi \cdot \cos {\pi \over 6} ։ Առավել կոպիտ մոտարկմամբ (0,01-ի ճշտությամբ) այն արտահայտվում է 5⋅−135 \cdot \pi - 13 արտահայտությամբ։
  • «Բոյինգի կանոնը».≈4⋅sin⁡0,747e \approx 4 \cdot \sin 0,747 տալիս է 0,0005-ի ճշտություն։
  • 10−7 10^{-7}  -ի ճշտությամբ՝≈3−563 \,\,\,\,e \, \approx \, 3 - \sqrt { \frac {5}{63}} \,\,\,  ,

10−9 10^{-9}  -ի ճշտությամբ՝≈2,7+182899990 e \approx 2,7 + \frac {1828}{99990}  ,4,6⋅10−10 4,6 \, \cdot \, 10^{-10}  -ի ճշտությամբ՝≈3−9394337 \,\, \,\,e \, \approx \, 3 - \frac {93}{94} \sqrt { \frac {3}{37}} :

  • 1/≈(1−1106)106 1/e \approx (1-\frac{1}{10^6})^{10^6} , 0,000001 ճշտությամբ։
  • 19/7 հարաբերությունըe թիվը գերազանցում է 0,004-ից փոքր։
  • 87/32 թիվը գերազանցում էe թիվը 0,0005-ից փոքր։
  • 193/71 թիվը գերազանցում էe թիվը 0,00003-ից փոքր։
  • 1264/465 թիվը գերազանցում էe թիվը 0,000003-ից փոքր։
  • 2721/1001 թիվը գերազանցում էe թիվը 0,000002-ից փոքր։
  • 23225/8544 թիվը գերազանցում էe թիվը 0,00000001-ից փոքր